Algebraic Formulas for the Coefficients of Half-integral Weight Harmonic Weak Maass Forms

نویسندگان

  • JAN HENDRIK BRUINIER
  • KEN ONO
چکیده

We prove that the coefficients of certain weight −1/2 harmonic Maass forms are “traces” of singular moduli for weak Maass forms. To prove this theorem, we construct a theta lift from spaces of weight −2 harmonic weak Maass forms to spaces of weight −1/2 vectorvalued harmonic weak Maass forms on Mp2(Z), a result which is of independent interest. We then prove a general theorem which guarantees (with bounded denominator) when such Maass singular moduli are algebraic. As an example of these results, we derive a formula for the partition function p(n) as a finite sum of algebraic numbers which lie in the usual discriminant −24n + 1 ring class field. We indicate how these results extend to general weights. In particular, we illustrate how one can compute theta lifts for general weights by making use of the Kudla-Millson kernel and Maass differential operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Harmonic Weak Maass Forms

Harmonic weak Maass forms of half-integral weight are the subject of many recent works. They are closely related to Ramanujan’s mock theta functions, their theta lifts give rise to Arakelov Green functions, and their coefficients are often related to central values and derivatives of Hecke L-functions. We present an algorithm to compute harmonic weak Maass forms numerically, based on the automo...

متن کامل

Differential Operators and Harmonic Weak Maass Forms

For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...

متن کامل

Differential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues

For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...

متن کامل

On Weak Harmonic Maass - Modular Grids of Even Integral Weights

A number of examples of families of weak Maass forms and modular forms which satisfy a striking equality between their q-expansion coefficients appeared recently. One can formulate this equality by saying that these coefficients constitute a grid. In this paper we consider the simplest setting of even integral weight and full modular group. We prove that for every positive even integral weight ...

متن کامل

Exact Formulas for Coefficients of Jacobi Forms

In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011